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ABSTRACT

Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution
can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics
and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a
substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the
intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem pro-
cesses (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, exam-
mning diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of
plastics, along with their variable properties and role in forming the “plastisphere”, underscores the complexity of their
influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress
responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies
employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae
and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by
phytoplankton—plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up
and top-down processes. This review emphasises that our understanding of how these multiple interactions compare
in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant
alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects
in addressing the environmental challenges associated with widespread plastic pollution.

Key words: aquatic food webs, autotrophs, epiplastic organisms, harmful algae, macroplastics, microalgae biodiversity,
microplastics, primary productivity, metabolic traits.

CONTENTS
L Introduction ... ... ... 836
II. Phytoplankton—plastic— interactions: comparison of results from marine and freshwater ecosystems . ...837
III. The toxicity of plastics on phytoplankton and its ecological relevance . .......................... 838
(1) Factors affecting the toxicity and effects of microplastics . ......... ... ... ... . ... .. .. .... 838
(2) Responses of different taxonomic groups and ecological relevance .................... ... ... 839
IV. Plastics as substrates and their influences on ecosystem processes .. .............c.oeuiuennenon .. 840
(1) ColONISAION PIOCESS v ottt ettt e et et et et e e e e e e e e e e 840
(2) Plastics as a substrate for harmful or invasive taxa . .......... ... . . i i 841
(3) The plastisphere and its impact on biodiversity . .............o.iutnt i 841
(4) Role of the plastisphere in nutrient provisioning and cycling .. ....... .. ... ... ... ... .. .... 842
(5) The impact of the plastisphere on eCOSyStem ProCesSES .. .. vv v vttt ve e 843
V. Effects on the aquatic food web ... ... 844
VL Conclusions . ... ... e 845
VILI. Acknowledgements ... .. ... ... 846
VIIL Author contributions . ........... ... .. 846
IX. References ... ... 846
X, Supporting IfOrmation . ... .. .. ...ttt 854

Biological Reviews 100 (2025) 834-854 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.



836

I. INTRODUCTION

Plastic pollution is a pervasive global environmental issue
that impacts both marine and freshwater ecosystems
(Rochman & Hoellein, 2020). Although initial research pri-
marily focused on plastic pollution in marine environments,
recent analyses have unveiled comparable or even higher
plastic concentrations in freshwater ecosystems (Nava
et al., 2023). The ubiquity of plastic waste and its far-reaching
consequences extend beyond aquatic environments, and it
has been proposed as a geological indicator of the Anthropo-
cene era (Andrady, 2022). Consequently, plastic pollution
may represent a threat to biodiversity and the functioning
of aquatic ecosystems, especially considering the increasing
pace of global plastic production and use (Hu ¢t al., 2019;
Borrelle et al., 2020).

Annually, an estimated 4.8-12.7 million metric tons of
plastic debris enter the oceans (Jambeck et al., 2015) through
numerous pathways. A large portion of plastics enters the
ocean from land-based sources, including mismanaged
household waste, wastewater discharge, and industrial activ-
ities. The remaining fraction is believed to originate from
maritime activities, such as those involving fishing vessels
and cruise ships (Rochman, 2020). In addition, atmospheric
deposition (i.e. wet and dry deposition of plastic particles) is
a newly recognized contributor to plastic pollution, where
plastic particles are transported over long distances even to
remote areas (Allen et al., 2019; Brahney ez al., 2020).

The term “microplastic” emerged in the early 2000s and
has since garnered significant global attention, primarily due
to the abundance and ubiquity of microplastics, and the signif-
icant threats they pose to both human health and the environ-
ment (Sun & Wang, 2023). Microplastics can be intentionally
manufactured in micrometre sizes, as seen in consumer goods
such as personal care products, constituting what is known as
“primary microplastics” (Frias & Nash, 2019). They can also
result from the degradation of larger plastic items due to
weathering, ultraviolet (UV) radiation, and mechanical forces,
a category referred to as "secondary microplastics” (Cole et
al., 2011). Microplastics are typically categorised within a size
range between 1 pm and 5 mm, although various studies have
adopted different ranges (e.g. Browne ¢ al., 2011; Claessens
et al., 2011). This lack of consistency becomes particularly
problematic when comparing microplastic data, emphasising
the growing importance of establishing a scientific standard
(Hartmann et al., 2019). Particles with a diameter in the nano-
meter range are termed “nanoplastics”. Their minute size
raises concerns about their potential interactions with biologi-
cal processes at the cellular level as they have the capability to
mfiltrate cellular structures (Larue ef al., 2021).

The multifaceted nature of plastics poses threats to aquatic
organisms across different organisational levels, from cells to
populations (Scherer et al., 2018). However, our current
comprehension of the consequences of these pollutants
remains limited, particularly regarding their impacts on
ecosystem-level dynamics. Plastics do not represent a single
compound or material type but rather encompass a diverse
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array of chemical compositions, each characterised by spe-
cific properties, including variations in heat and chemical
resistance (Andrady, 2017). Additionally, the incorporation
of numerous additives during resin processing and product
fabrication further adds to the complexity of these contami-
nating materials (Andrady & Rajapakse, 2016). Plastics can
also provide substrates for various organisms since their sur-
face can be easily biofouled when introduced into aquatic
environments. This unique ecological niche is known as the
“plastisphere” (Zettler, Mincer & Amaral-Zettler, 2013).
This term is widely used to describe various taxa, including
bacteria, microalgae, and larger organisms like molluscs,
among others, associated with plastics in numerous aquatic
ecosystems (Amaral-Zettler, Zettler & Mincer, 2020). The
plastisphere is sometimes referred to as a human-made
“eighth continent” not only offering a stable, durable, and
buoyant habitat for organisms (Barros & Seena, 2021; Gao
et al., 2021) but also playing a central role in several biogeo-
chemical processes. For instance, epiplastic biofilms can har-
bour species resistant to metals or antibiotics, facilitate
horizontal gene transfer, drive species evolution for plastic
biodegradation, and serve as vectors for the transport of alien
species (Dabrowska, 2021; Du et al,, 2022; Rani-Borges,
Moschini-Carlos & Pompéo, 2021; Leite et al., 2022).

The initial observations of bacterial and diatom colonisa-
tion on plastic debris date back to the 1970s (Carpenter &
Smith, 1972). Early studies of the plastisphere focused on
microscopically identifying the microorganisms inhabiting
such “environment” (Amaral-Zettler ¢ al., 2020). More
recently, studies have investigated not only the biodiversity
of this habitat through next-generation sequencing-based
methods (Bakal et al., 2019) but also delved into the evolution
and succession of their communities, trophic interactions,
metabolism, and the influence of the plastisphere taxa on
their surrounding environment (Bryant et al., 2016; Casa-
bianca et al., 2021; Cheng et al., 2021; Hope et al., 2021). Prior
research has predominantly focused on bacteria, often over-
looking eukaryotes, particularly microalgae, despite their
being significant components of the biofilm community
within the plastisphere (Barros & Seena, 2021; Nava &
Leoni, 2021; Xianbiao et al., 2023). Consequently, despite
the increasing attention given to this subject, an in-depth
comprehension of the ecological impact of plastics on marine
and freshwater phytoplankton/phytobenthos is still lacking.

In this review, we explore the intricate interplay between
plastics (both micro- and macroplastics) and phytoplank-
ton/phytobenthos, addressing pivotal questions about their
influence on fundamental aquatic ecosystem processes, such
as productivity and nutrient cycling. We analyse and com-
pare results from marine and freshwater ecosystems across
different organisational levels, from subcellular processes to
entire ecosystems. Our investigation encompasses the effects
of plastics of different sizes, including both the potential
direct toxic effects of smaller plastics on phytoplankton and
the role of larger plastics as surfaces for colonisation
(i.e. plastisphere research). We aim to provide insights into
the following research questions and knowledge gaps: ()
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how do phytoplankton—plastics interactions occur, and what
are their implications for the broader ecological community,
particularly regarding biodiversity and impacted functions;
(1) to what extent are ecosystem processes and metabolic
functions affected by the interaction between (micro)plastics
and phytoplankton; and () how do the effects mediated by
phytoplankton and plastics affect the food web v bottom-
up and top-down processes?

II. PHYTOPLANKTON-PLASTIC-
INTERACTIONS: COMPARISON OF RESULTS
FROM MARINE AND FRESHWATER
ECOSYSTEMS

Aliterature review of Web of Science publications from 1992 to
2022 (see online Supporting Information, Appendix S1, for
search methodology, and Table S1 for list of included stud-
ies) showed that research on the interaction between plastics
and phytoplankton has predominantly concentrated on
marine ecosystems, representing about 60% of the identified
publications (Fig. 1A).

Most studies examined the toxic effects of plastics on phy-
toplankton, primarily focusing on individual species (approx-
imately 70% of all publications retrieved; Fig. 1B). In marine
studies, diatoms were the most frequently investigated
group (e.g. species of Chaetoceros, Thalasswsira, Phaeodactylum
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Fig. 1. Percentage of studies (V= 244) retrieved from Web
of Science covering the period 1992-2022 that examine
the relationship between (micro) plastics and phytoplankton
(A) in freshwater (i.e. lentic and lotic) and marine ecosystems,
(B) at the community or species level, and (C) in different
biomes. NA denotes data not available. For the query string
used, see Appendix S1. The included studies are provided in
Table S1.
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tricornutum), followed by green algae (e.g. species of Dunaliella
or Tetraselmis), haptophytes (e.g. Ochromonas spp.), dinoflagel-
lates (e.g. Alexandrium spp.), and cyanobacteria (e.g. Prochloro-
coccus spp.). In freshwater studies, the species investigated
most frequently were cyanobacteria, with Microcystis aeruginosa
being a prominent example, followed by various species of
green algae (e.g. species of Chlorella, Chlamydomonas, and
Scenedesmus).

Of all the studies considered, approximately 80% in total
focused on species or communities from temperate (42%)
and tropical (39%) environments (Fig. 1C). Surprisingly, in
around 20% of studies, no explicit reference was made to
the environment from which the taxon was isolated or in
which the research was conducted. To date, only two studies
have explored the effects of plastics in polar environments or
on polar organisms: Antarctic microbial biofilms (Caroppo
et al., 2022) and arctic cyanobacteria (Xin et al., 2022).

In addition to the general patterns described above, over
the last decade there has been a notable increase in the num-
ber of publications (Fig. 2). The proportion of studies focus-
ing on freshwater ecosystems has risen from none in 2013
to 43% of the total in 2022, and the proportion on tropical
ecosystems has also increased (from none in 2013 to 39% of
the total in 2022). Additionally, there has been an increase
in studies on individual species rather than communities
(from 50% in 2013 to 72% of the total in 2022).

Different toxic effects have been reported for (micro)plas-
tics in studies of freshwater and marine phytoplankton. For
example, the presence of microplastics inhibited photosyn-
thesis in the freshwater microalga Chlamydomonas remhardtii
while promoting it in the marine microalga P. tricornutum
(Li et al., 2020; Chen et al., 2022). Similarly, growth of fresh-
water Chlorella sp. was reduced, whereas the marine
P. tricornutum showed adaptive capacity, showing a positive
response when exposed to the same type of microplastics
(Song et al., 2020). It remains challenging to determine
whether these differences are associated with variations in
environmental conditions or species-specific characteristics.

When examining the colonisation of phytoplankton on
plastic surfaces, distinct patterns emerge between freshwater
and marine environments, due to differences in nutrient
availability, water temperature, dissolved oxygen, salinity

Number of publications
N [$)] ~
[¢)] (=) )]

o

1992 1998 2004 2010 2016 2022

Fig. 2. Number of publications examining the effects of (micro)
plastics on phytoplankton per year identified by our literature
research.
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levels, and microbial communities (Harrison, 2018; Barros &
Seena, 2021; Miao et al., 2021) influencing the establishment
and development of phytobenthos communities on plastics.
Consequently, distinct processes are observed, and overall
patterns may differ across environments. Compared to the
generally more stable temperature conditions in marine hab-
itats, freshwater ecosystems, particularly in smaller water
bodies like ponds, experience rapid temperature fluctuations
(Woodward, Perkins & Brown, 2010) that can influence the
development of biofilms. In water bodies with higher temper-
atures, biofilms can be thicker, with higher levels of chloro-
phyll g, extracellular polymeric substances (EPS), and total
phosphorus content, while lower temperatures have the
opposite effect (Zhao et al., 2018). Salinity level also deter-
mines the types of organisms that can grow on the surface
of plastic debris: in marine environments, communities tend
to be dominated by species adapted to higher salinities, whilst
in freshwater, less-halotolerant species are more common
(Lauritano et al., 2020). Furthermore, flow dynamics play a
crucial role, impacting both the quantity and composition
of the epiplastic community. Lentic environments, charac-
terised by still or slowly moving water (e.g. lakes and ponds),
permit nutrient accumulation in the water (Buffagni, 2021).
These conditions favour the rapid proliferation of phyto-
plankton, often resulting in algal blooms. Conversely, lotic
ecosystems (e.g. rivers and streams) are characterised by con-
tinuous water flow, which ensures variations of oxygen and
temperature. This flow dynamic creates a less-favourable
environment for extensive growth of phytobenthic organisms
(Schneider & Petrin, 2017).

III. THE TOXICITY OF PLASTICS ON
PHYTOPLANKTON AND ITS ECOLOGICAL
RELEVANCE

(1) Factors affecting the toxicity and effects of
microplastics

Numerous studies have documented the interactions
between plastics and phytoplankton in aquatic environ-
ments, hinting at potential toxicity effects (e.g. Khoironi,
Anggoro & Sudarno, 2019; Nava & Leoni, 2021). These
interactions are influenced by various characteristics of the
plastics, including their shape, size, polymer density, and
chemical composition (Chen et al., 2020b; Liu ¢ al., 2021D).
Several attributes of microplastics have the capacity to affect
their buoyancy, transport, and distribution, consequently
modifying vertical fluxes and impacting the exposure of phy-
toplankton to these particles (Kooi e al., 2017; Eich,
Weber & Lott, 2021).

Particle size has a pivotal role in determining toxic
effects of microplastics, and the literature documents
various size-dependent consequences. As detailed by Chen
et al. (2020b), small plastic particles (1-2 pm) can be readily
adsorbed to or internalised by cell walls, reducing phyto-
plankton growth through the mechanical inhibition of
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nutrient uptake and gas exchange (Liu et al.,, 2020; Prata
et al., 2019). Nanosized plastics adsorbed to the surface of
phytoplanktonic organisms may have a shading effect that
reduces photosynthetic efficiency and growth (Zhang
et al., 2022a). Liu et al. (2020) found that the presence of
2 pm microplastics, in addition to causing cell membrane
damage, is linked to increased cellular stress (1.e. reactive oxy-
gen species, ROS).

Research has predominantly focused on specific polymers,
such as polyethylene terephthalate (PET) and polypropylene
(PP), and has revealed a negative correlation between
Increasing microplastic concentrations and phytoplankton
growth (Khoironi et al., 2019). Dose-dependent inhibition
of phytoplankton growth has been also observed in the pres-
ence of nano- and micro- polystyrene (PS) beads, due to
direct damage of the cell membrane and increased levels of
ROS (Xiao ¢ al., 2020). In addition, PS has been found to
alter the expression of genes involved in various physiological
functions, including ATP synthesis, consequently influencing
cell metabolic activity (Zhou et al., 2021). Polyvinyl chloride
(PVC) and polyethylene (PE) act by significantly reducing
chlorophyll content and photochemical efhciency (Fy/F,,)
of photosystem II (Wang et al., 2020b; Senousy et al., 2023).

The toxic impacts of plastics on phytoplankton are not
solely connected to the polymers themselves but also to the
leachates they produce. It has been reported that some leach-
ates (e.g. acetophenone, fluoranthene, dioctyl phthalate, or
zinc) can inhibit the growth of certain species of cyanobac-
teria (Gapolupo et al., 2020). The extent of inhibition depends
on the cell size (surface/volume ratio), morphology, physiol-
ogy, and the quantity of leachate (Ferndndez-Judrez
et al., 2021; Fu et al., 2019; Larue e al., 2021). Tetu et al.
(2019) investigated the effect of exposure to high-density PE
and PVC leachate on the marine cyanobacterial genus Pro-
chlorococcus and identified effects on growth and photosyn-
thetic capacity, resulting in genome-wide transcriptional
changes. Capolupo el al. (2020) investigated the effects of
plastic leachate on freshwater (Raphidocelis subcapitata) and
marine (Skeletonema costatum) microalgae. Almost all compo-
nents of the leachate (e.g. benzothiazole, acetophenone, lead)
inhibited the growth of algae. Biofilm formation on plastic
surfaces (see Section IV) may influence the leaching of addi-
tives, although how the dynamics of leaching are affected by
biofilms is still unclear. Research has identified a “cover
effect”, where the biofilm forms a barrier on the surface of
the plastics, potentially altering the kinetics of chemical
exchange (Peng et al., 2023; Binda et al., 2024).

In addition, microplastics have the capacity to adsorb
organic and inorganic harmful substances from the environ-
ment. By assimilating them, microplastics effectively reduce
the environmental availability of such substances, thereby
mitigating damage to sensitive species (Fernandez-Judrez
et al., 2021). For instance, Fu ¢t al. (2019) showed that PVC
particles can adsorb copper 1ons, thereby limiting their toxic
effects on microalgal cells. However, it is important to note
that the effectiveness of this protective role is contingent upon
whether or not these microplastics are subsequently absorbed
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by microorganisms in the ecosystem. If microorganisms do
take up these plastic particles, the absorbed harmful sub-
stances may impact the organism and/or be transferred
through the food web, posing potential risks to higher trophic
levels (Fu et al., 2019).

Morphological changes have been extensively observed
when micro- and nanoplastics adhere to cell surfaces. This
1s particularly evident for positively charged microplastics,
which adhere to the typically negatively charged cytomem-
brane of microalgae. As a result, these microplastics become
embedded in the cell membrane (Larue et al., 2021).
Researchers have observed that the presence of plastic frag-
ments can lead to deformation of chloroplasts and thylakoid
membranes, leading to a reduction in cell chlorophyll con-
tent and hence diminished photosynthetic efficiency (Mao
et al., 2018; Prata et al., 2018; Fu ¢t al., 2019). For instance,
Besseling et al. (2014) reported a reduction in chlorophyll
content in cells of Chlorella and Scenedesmus spp. when exposed
to PS nanoplastics. Sjollema et al. (2016) revealed a 45%
decrease in photosynthetic rate of Dunaliella tertiolecta in the
presence of microplastics, whereas Yan et al. (2021) demon-
strated the deformation and disruption of thylakoid struc-
tures in C. remhardtii when exposed to plastic-induced stress.
The likely cause of these effects is the surface adsorption of
plastics, resulting in decreased expression of photosynthesis-
related genes and metabolic disruption. Damage to
photosynthesis increases the production of ROS, culminat-
ing in oxidative damage and lipid peroxidation (Prata
etal., 2019; Nava & Leoni, 2021). ROS hinders the synthesis
of chlorophyll ¢ and & and disrupts electron transport
between primary and secondary acceptor plastoquinones,
thereby diminishing the efficiency of photosystem II
(Yan et al., 2021). Lipid peroxidation elevates the level of mal-
ondialdehyde (MDA) within the cells, raising the permeabil-
ity of the cell membrane and facilitating the uptake of plastic
particles. When exposed to micro- and nanoplastics, Yan
et al. (2021) observed elevated levels of ROS and MDA in
C. ranhardtii cells. This increase in oxidative stress led to
greater membrane permeability, which, in turn, resulted in
increased plastic uptake by the cells. To defend against oxi-
dative stress, the production of superoxide dismutase
(SOD), catalase (CAT), and carotenoids increases. However,
if the ROS content surpasses the cell’s self-repair capacity, it
can trigger apoptosis, necrosis and cell death (Prata
et al., 2019; Nava & Leoni, 2021; Jiazhu et al., 2022). When
exposed to environmentally relevant concentrations of
microplastics (range 10-1000 mg/L), Yuanyuan e al
(2022) noted augmented production of pigments in the
microalga Chlorella vulgaris as a defence against oxidative
stress. Jiazhu et al. (2022) observed increased production of
SOD in Prorocentrum donghaiense exposed to microplastics.
However, this response proved insufficient to counteract
the oxidative stress, as the cell membrane sustained damage
due to lipid peroxidation induced by accumulating ROS.
Oxidative stress can also promote the release of harmful
metabolites, such as microcystin by M. aeruginosa (Zheng
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etal., 2021), as a mechanism to mitigate microplastic-induced
oxidative stress (Amaneesh e/ al., 2023).

Other defence mechanisms have been documented in
microalgae in response to exposure to plastics. One common
response to plastic exposure involves the homoaggregation of
cells, which serves to decrease the surface area exposed to
plastic particles (Yan ¢t al., 2021). Researchers have reported
elevated expression of genes responsible for the biosynthesis
of EPS [e.g. Yan ¢t al. (2021) in C. remnhardtir]. EPS serve to
thicken the cell wall, providing a shield against physical
harm. However, microplastics can accumulate within the
EPS, obstructing nutrient uptake, and limiting light availabil-
ity (Prata et al., 2019; Liu et al., 2021b; Yan et al., 2021).

Effects of microplastics can also manifest through the mod-
ification of metabolic mechanisms. Amaneesh et al. (2023)
observed a decrease in phosphorus uptake in the cyanobacte-
rium Haloteche sp. when exposed to microplastics. While this
decrease was likely a result of an indirect mechanism, specif-
ically phosphate ion adsorption to the plastic particles, it
highlights the far-reaching implications of microplastic expo-
sure. Other studies have shown that the presence of micro-
plastics and their organic additives can change phosphate
homeostasis, leading to increased alkaline phosphatase activ-
ity, while reducing the rate of PO, uptake (Fernandez-
Juarez et al., 2021). In addition, reduction in the quantity of
oil bodies, which function as an emergency energy source
for the maintenance of normal growth, has been observed
in the marine diatom Chaetoceros neogracile under microplastic
stress-induced conditions (Seoane et al., 2019). A shift in lipid
composition (e.g. chloroplast galactolipids) and alterations in
fatty acid profile, coupled with reductions in neutral lipid
content and an increase in esterase activity, were reported
in Chlorella sorokiniana exposed to PS (Amaneesh e al., 2023).
Such alterations in fatty acids can have cascading effects
throughout the food web (see Section V).

(2) Responses of different taxonomic groups and
ecological relevance

Plastics exert distinct effects on different groups of phyto-
plankton, with some beneficial and others detrimental
(Rani-Borges ¢ al., 2021). Most studies show a negative effect
of microplastics on both marine and freshwater phytoplank-
ton (Gao et al., 2021). The specific impact of microplastics
often depends on group- or species-specific traits. For
instance, some cyanobacteria can tolerate the presence of
plastics better than other organisms (Fernandez-Judrez
et al., 2021; Hitchcock, 2022). They can form microfilms or
colonies around microplastics (Dussud et al., 2018b; Hitch-
cock, 2022) and exhibit a greater capacity to cope with light
limitation due to shading caused by microplastics (Sjollema
et al., 2016; Zhu et al., 2021). Similarly, the capacity to
form hetero-aggregates appears to enable certain marine
diatoms to manage microplastic toxicity, as this may improve
their photosynthetic efficiency and restore their growth
(Long et al., 2017; Wang et al., 2020a). The formation of
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hetero-aggregates depends on various factors, including the
size of the particles (Wang & Chen, 2023) and the type of
polymer. Lagarde e al. (2016) noted the formation
of hetero-aggregates for PP but not for high-density polyeth-
ylene (HDPE) microplastics. Trait-specific effects of micro-
plastics may also be influenced by the thickness of the cell
wall, which acts as a barrier against microplastic penetration
(Sjollema et al., 2016; Nolte et al., 2017; Parsai et al., 2022).
Furthermore, cell dimensions play a role, with smaller cells
being more susceptible to the impact of microplastics due
to their relatively higher cell surface area to volume ratio
(Sjollema et al., 2016; Chen et al., 2020b; Ge et al., 2022).

The majority of studies examining the effects of microplas-
tics on microalgae focus on green algae and diatoms (Larue
etal., 2021). One important consideration is the environmen-
tal relevance of the microplastics used. Many investigations
have assessed plastic toxicity using pristine spherical particles,
such as spherical PS particles (Larue ¢t al., 2021). However,
real-world environmental plastics exhibit considerable varia-
tion in terms of shape, size, polymer type, and surface charac-
teristics. Furthermore, these characteristics can change as
plastics age (Larue et al., 2021), although it remains challeng-
ing to determine the associated implications. Further
research will be essential to unravel ecologically relevant
impacts.

IV. PLASTICS AS SUBSTRATES AND THEIR
INFLUENCES ON ECOSYSTEM PROCESSES

(1) Colonisation process

In both freshwater and marine ecosystems, plastics are rap-
1dly colonised by a variety of organisms, including bacteria,
single-celled eukaryotic organisms, larvae, and spores
(Amaral-Zettler et al., 2020; Yu et al., 2023). Upon coming
into contact with plastic, free-living microorganisms can
form biofilms to transition from a planktonic mode to a sessile
mode. Diatoms and various bacteria, such as Gammaproteo-
bacteria, Cyanobacteria, and Alphaproteobacteria, are well
recognised as early colonisers (Amaral-Zettler ¢t al., 2020;
Odobel et al., 2021; Yu et al., 2023).

During the initial phase of colonisation, pioneer bacteria
produce EPS through the regulation of lipid/fatty acids
and c-di-GMP (bis(3'—5)-cyclic dimeric guanosine mono-
phosphate) signals (Su et al., 2022a). The secretion of EPS
enhances adhesion and facilitates further colonisation by var-
lous microorganisms, for example by members of Bacter-
oides (Fig. 3). These organisms are highly adaptable and
promote the irreversible attachment of microflora by
forming pili, adhesive proteins, and additional extracellular
polymeric substances (Du et al., 2022). As the process con-
tinues, different organisms upregulate gene expression
related to communication, adhesion, substance transport,
and chemotaxis (Solano, Echeverz & Lasa, 2014). This gives
rise to a tissue-like matrix (Yu et al., 2023) characterised by
channels that aid in distributing nutrients between cells
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(Amaral-Zettler ef al., 2020). Other groups, including fungi
and archaea, also become part of the biofilm, although their
precise role in the colonisation process remains poorly under-
stood (Yu et al., 2023).

Opver time, the biofilm structure undergoes transformation
into a more complex three-dimensional (3D) structure,
accommodating both heterotrophic bacteria and prokaryotic
and eukaryotic autotrophs (Yokota et al., 2017). Several stud-
ies have reported that the community composition on plastic
surfaces differs from that of the surrounding free-living
organisms, both in freshwater and marine systems (Bryant
et al., 2016; Odobel ¢t al., 2021; Wang et al., 2022b; Sosa &
Chen, 2022). However, no group of microorganisms has
been exclusively observed on plastic (Amaral-Zettler
et al., 2020). The diversity of the biofilm community tends
to increase over time, with filamentous cyanobacteria and
associated heterotrophic bacteria becoming dominant while
early-colonising diatoms decrease in abundance. Neverthe-
less, most studies report lower species richness on plastic
and greater evenness than in the community in the surround-
ing environment (Amaral-Zettler et al., 2020).

The characteristics and properties of plastic surfaces play a
crucial role in determining colonisation processes. This
concept broadly applies to biofilm formation across various
materials, with existing literature highlighting how substra-
tum properties influence colonisation (Vadeboncoeur ¢t al.,
2006). In plastisphere research, there is substantial debate
over whether substrate properties or environmental condi-
tions are more dominant in shaping colonising communities.
Many studies suggest that environmental factors are more
influential in determining community composition, particu-
larly in mature biofilms. This is likely because only the initial
layers of the biofilm come into direct contact with the sub-
strate (Rummel e al., 2017; Nava et al., 2024). Additionally,
recent research indicates that as biofilms mature, their com-
munity structure diverges from patterns observed after
shorter incubation periods, underscoring the need for studies
that investigate longer-term processes in plastisphere
research. Kirstein et al. (2019) compared communities after
short-term (6 weeks) and long-term (5 months) incubation,
revealing shifts towards communities with lower richness
over time for all plastic types. This suggests selection for
microbes specialised to low-nutrient conditions or to specific
plastic types. However, few studies have evaluated longer-
term colonisation, particularly regarding the autotrophic
component of the community, making it difficult to deter-
mine the time required to reach peak biomass for plastic sub-
strates and whether this differs from naturally occurring
substrates.

Ageing processes can alter the properties of plastic sub-
strates, which in turn can affect the environmental fate of
plastics, their sorption characteristics, and ultimately their
impact on biological communities, including planktonic
organisms (Binda et al., 2024).

While the available literature has provided insights into many
mechanisms related to biofilm colonisation on plastic substrates
in marine and freshwater environments, many aspects remain
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unresolved. Further investigation is required, for example, on
how light, nutrient availability or temperature modulate the col-
onisation by microorganisms or how the timing and rate of dif-
ferent stages of biofilm formation occur.

(2) Plastics as a substrate for harmful or
invasive taxa

Plastics can also serve as a suitable substrate for potentially
harmful microorganisms (Wang et al., 2019). In a recent review,
Audrézet et al. (2021) emphasised the association of phyto-
benthic organisms with plastic debris. For example, the diatom
Ceratoneis closterium has been consistently identified on marine
plastics. This organism, which is known to be associated with
mucilage events (the formation of large aggregates in the water
column), can pose a risk to aquatic organisms, particularly
fishes, by reducing oxygen availability (Masé et al., 2016). Casa-
bianca et al. (2019) reported the presence of toxin-producing
cyanobacteria on floating plastics in the sea, including species
belonging to the toxic bloom-forming genus Pseudo-nitzschia.
Floating plastic debris collected from various locations along

the Catalan coast in the northwestern Mediterranean has been
found to host potentially harmful dinoflagellates (Ostreopsis spp.
and Coalia spp.), and both temporary cysts and vegetative cells
of the harmful algal bloom species Alexandrium taplori (Masd
et al., 2003).

On a broader scale, plastic debris plays a recognized role
in facilitating the spread of non-native invasive species
(Audrézet et al., 2021). This has been attributed to the ability
of plastic fragments to be transported over significant dis-
tances, thereby promoting the dispersal of non-native and
potentially invasive epiplastic organisms. Examples include
the brown alga Undaria pinnatifida and the green alga Codium
Jfragile, with the latter being particularly invasive in Europe
(Audrézet et al., 2021). This understudied phenomenon has
the potential to pose a significant threat to biodiversity and
ecosystem health (Casabianca ef al., 2019).

(3) The plastisphere and its impact on biodiversity

Plastic pollution has the potential to alter the biodiversity of
the recipient environment (Du et al., 2022). Plastics serve as
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substrates for colonisation by microorganisms (see Section-
IV.1), and different taxa exhibit varying colonisation capabil-
ities. Consequently, the plastisphere is implicated in potential
changes to phytoplankton/phytobenthos community com-
position, influencing their biodiversity. However, current
studies lack a connection between the plastisphere and
descriptors of phytoplankton/phytobenthos biodiversity,
such as richness, evenness, and trait- or taxonomy-based
assessments. Notably, most research on the impact of plastic
pollution on microorganism diversity has predominantly
focused on prokaryotes (Odobel e al., 2021; Du
et al., 2022), overlooking the broader spectrum of biodiver-
sity, which includes eukaryotic organisms (Barros &
Seena, 2021).

Several recent studies have demonstrated variations in the
composition and diversity of the epiplastic community
depending on different factors. For example, using 16S ribo-
somal RNA (rRNA) sequencing, Wen ¢t al. (2020) showed
that plastic colour can have impacts on the community struc-
ture and functional diversity of the plastisphere. Biofilms
colonising blue plastics appeared to have a higher functional
diversity than those on transparent or yellow plastics, suggest-
ing that plastic colours/additives may drive selective pres-
sures on microorganisms colonising plastics. Furthermore,
studies have revealed differences in community composition
between plastics and other non-synthetic materials, as well
as differences compared with the microalgal planktonic com-
munity (Shen ez al., 2021). This underscores the potential of
the epiplastic community to occupy a new and distinct eco-
logical niche that favours specific organisms. For instance,
Kettner e al. (2019) investigated the eukaryotic community
composition on PE and PS, and demonstrated that the epi-
plastic community was significantly distinct from communi-
ties on wood and in the surrounding water, with overall
lower diversity (based on richness, Shannon diversity and
Simpson diversity). The authors concluded that PE and PS
excluded certain organisms rather than attracting a specia-
lised epiplastic community. In addition, no significant differ-
ences were detected between the eukaryotic communities on
PE and PS, in accordance with other studies comparing micro-
bial communities among plastic polymers (e.g. Hoellein
et al., 2014; Oberbeckmann, Osborn & Duhaime, 2016; Nava
et al., 2022). Oberbeckmann et al. (2014) did not find any differ-
ence in the relative diversities of communities present on differ-
ent plastic types.

The effects of plastics can propagate across the planktonic
community. Laboratory experiments (e.g. Hitchcock, 2022;
Kettner e al, 2019) have shown that phytoplankton
diversity is reduced in environments with high concentrations
of microplastics compared to less-polluted or control sam-
ples. This decline in diversity may be attributed to microplas-
tics promoting the dominance of a few tolerant species,
thereby reducing overall community diversity (Amaneesh
et al., 2023). Moreover, plastic biofilms can act as potential
vectors for exogenous species that may detach from the bio-
film and compete for resources within the pelagic community
(Zettler et al., 2013).
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Alterations in phytoplankton diversity can influence sec-
ondary consumers, particularly if cyanobacteria increase in
abundance while other more palatable components
decrease. While there have been initial attempts to model
the potential food-web implications of microplastics
(e.g. Kong & Koelmans, 2019), there is a substantial need
for comprehensive research to assess their impact across mul-
tiple trophic levels, in particular their effects on community
structure.

(4) Role of the plastisphere in nutrient provisioning
and cycling

While carbon is typically abundant in aquatic ecosystems,
nitrogen, phosphorus, and/or iron are limiting in most eco-
systems on Earth. Plastic debris provides a surface that
enhances the accessibility of these limiting nutrients com-
pared to the more diluted surrounding water system
(Amaral-Zettler et al., 2020; Wright ¢ al., 2020). In general,
autotrophic biofilms play a pivotal role in nutrient cycling.
Although experimental studies have demonstrated lower
nutrient uptake rates from the water column of biofilms com-
pared to free-living phytoplankton, biofilms appear to be
more effective at nutrient retention (Vadeboncoeur &
Steinman, 2002). Microorganisms within the biofilm have
the capacity to derive nutrients not only from the water
column but also through internal cycling and from the sub-
strate to which they are attached (Vadeboncoeur &
Steinman, 2002). Therefore, the plastisphere can provide a
competitive advantage in terms of nutrient acquisition. Bar-
ros & Seena (2021) demonstrated that, in environments with
high nutrient levels, microplastics efficiently adsorb these
nutrients, transforming plastics into nutrient-rich surfaces
for early-colonising microorganisms. This nutrient adsorp-
tion fosters microbial growth and enzymatic activities, result-
ing in more cohesive microbial communities. Moreover,
nutrient limitation can be less severe in the plastisphere due
to various mechanisms. For example, cyanobacteria with
more efficient light-harvesting systems (phycobilisome
antenna protein-encoding genes as opposed to Chl
a/b-binding light-harvesting protein-encoding genes) have
been observed on the surface of plastics (Bryant et al., 2016).
These more efficient protein
(i.e. nitrogen) investment per tetrapyrrole (e.g. in chlorophyll
and phycobilin), thus providing an advantage in low-nutrient
conditions (Bryant e al, 2016). Another example is the
increased presence of nitrogenase genes (i.e. nifH, nifD, and
nifK) in metagenomes associated with plastic particles, indicat-
ing that nitrogen fixation might represent a strategy to over-
come nitrogen limitation (Bryant ¢t al., 2016; Du ¢t al., 2022).

Autotrophic organisms can release nutrients into the sur-
rounding environment, and these can potentially affect the
local planktonic community (Priya et al., 2022). Moreover,
leaching of additives by microplastics can even promote
microbial growth by serving as an auxiliary nutrient source
(Rummel ¢ al., 2017). Plastic leachate has been reported to
influence microbial communities, increasing bacterial
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biomass at lake surfaces. Bacterial growth was found to be others indicate potential negative effects through changes in
1.72 times more efficient in the presence of plastic leachate species diversity and altered community composition
compared to natural organic matter, primarily due to the (Zettler et al,, 2013; Oberbeckmann, Kreikemeyer &
greater accessibility of carbon (Sheridan ez al., 2022). Labrenz, 2018; Amaral-Zettler et al., 2020). Plastics can pro-

vide a substrate for the attachment and growth of photosyn-
thetic organisms, potentially enhancing local primary

(5) The impact of the plastisphere on ecosystem productivity. However, the overall effect on ecosystem-wide

processes productivity 1s often negative (Amaneesh et al., 2023). Plastics
Primary productivity is a crucial ecosystem process and supports can also harbour species that outcompete photosynthetic
the overall functioning of ecosystems (Larue et al., 2021). organisms, leading to rapid decreases in primary productivity
Several studies have investigated the potential effects of the (Zettler et al., 2013). Moreover, impacts on primary produc-
plastisphere on primary productivity in different ecosystems tivity are not due solely to the plastics themselves but also to

(Larue et al., 2021; Miao et al., 2021; Conan et al., 2022). the leaching of additives/plasticizers. Compounds such as
The impact can vary depending on the ecosystem, specific ~ phthalates and bisphenol A, for example, can reduce photo-

organisms involved, and factors such as water velocity, nutri- synthetic capacity (Wright e al, 2020; Chaudhary
ent and light availability, and the chemistry of the substrate et al., 2022).
surface (Fig. 4) (Battin el al., 2016; Bridier e al., 2017; Microbial communities are sensitive to environmental

Castro-Castellon ez al., 2022; Chaudhary et al., 2022; Vincent changes (Fig. 4) and these can influence the structure and
et al., 2022). While some studies suggest that the plastisphere  functioning of biofilms, thereby affecting primary productiv-
may enhance primary productivity and microbial diversity, ity (Cross, Wallace & Rosemond, 2007; Battin ¢t al., 2016).
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The consequences of plastic pollution, therefore, are not sim-
ply due to the physical modification of habitats but may also
impact the biogeochemical processes of aquatic ecosystems.
Biofilms that develop on plastic substrates support robust
microbial growth that affects similar ecosystem processes as
natural substrates, thus affecting the base of aquatic food
webs (Hoellein et al., 2019; Amaral-Zettler et al., 2020;
Wright et al., 2020).

The plastisphere can exert an influence on the metabolic
traits of primary producers. Enzymes involved in nitrogen
and phosphorus acquisition may be upregulated in
plastisphere-associated communities in response to the
altered nutrient environment around plastic debris. Conse-
quently, this can alter the stoichiometry of nutrient cycling,
potentially affecting the growth dynamics and community
composition of phytoplankton populations (Fig. 4;
Hutchins & Fu, 2017; Jacquin ez al., 2019).

The plastisphere may also affect carbon sequestration,
perturbing carbon cycling, and potentially triggering
cascading effects on ecosystem functioning (Arias-Andres,
Rojas-Jimenez & Grossart, 2019; Amaneesh et al., 2023).
For example, the presence of microplastics in aquatic envi-
ronments can affect the cycling of organic matter. The activ-
ity of enzymes crucial for the decomposition of organic
substances can be altered by microbial consortia that colonise
plastic debris by increasing the intensity of denitrification
and N,,O production, thereby influencing the overall rate
of organic matter turnover (Su et al., 2022a). For instance,
biofilms on plastic can exhibit a high abundance of sapro-
trophic Chytridiomycota, which are known to play a key
role in the decomposition of organic matter within biofilms
(Oberbeckmann et al., 2016; Kettner et al., 2017).

To summarise, (micro)plastics result in changes to the
community composition of the epiplastic community and
are likely to shape the development and evolution of phyto-
plankton/phytobenthos. Consequently, these alterations
have far-reaching implications for the dynamics of the entire
ecosystem (Amaral-Zettler ez al., 2020).

V. EFFECTS ON THE AQUATIC FOOD WEB

Due to their small size, microplastics are readily accessible to
organisms throughout the food web, as highlighted by their
presence in a variety of species (Li et al., 2020). Microplastics
can affect food webs (Fig. 5) by alteration of (z) trophic rela-
tionships between producers and consumers; (i) the flux of
energy across different trophic levels; and (i) the behaviour
and physiology of consumers (Foley et al, 2018; Gerdes
et al., 2019; Malinowski et al., 2023).

The interaction of phytoplankton with plastics plays a cru-
cial role in shaping food web processes. Plastic particles
adsorbed by phytoplankton at the base of the trophic chain
can thus reach subsequent trophic levels. Chae ¢f al. (2018)
observed the uptake of microplastics by fish species including
Orizias sinensis and Lacco temmincku. The plastic particles
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entered the fish through the consumption of the crustacean
Daphnia magna, which fed on the green alga, C. remhardti.
Ingestion of microplastics by this route led to histopathologi-
cal changes in the liver of the affected fish. Of concern,
microplastic ingestion extended into the next generation
through penetration of embryo walls, establishing a direct
link between plastic ingestion and inter-generational physio-
logical consequences (Chae et al., 2018). Similarly, Mattsson
et al. (2017) attributed behavioural abnormalities in goldfish
Carassius carassius to the accumulation of plastic particles in
the brain. In their study, positively charged PS nanoparticles
ingested by the zooplankton D. magna through its diet of Sce-
nedesmus spp. algae were subsequently consumed by the gold-
fish. In a similar experiment, Cedervall e al. (2012)
documented altered fish feeding behaviour and reduced fat
reserve metabolism as a result of food chain exposure to
microplastics. Biofouling of plastics (see Section IV.1) can
increase ingestion rates at higher trophic levels, as plastics
become more appealing to organisms like zooplankton due
to the accumulation of biofilms with microalgae on their sur-
faces (Polhill ¢t al., 2022).

The processes underlying transfer of microplastics through
the food web are complex and involve various organisms at
different trophic levels. Microplastics can impact the func-
tioning of aquatic ecosystems by affecting both bottom-up
and top-down regulatory mechanisms. For instance, the con-
sumption of hetero-aggregates formed by phytoplanktonic
organisms and microplastic particles has potential negative
impacts on zooplankton, including a reduction in the neutral
lipid content and quality of the diet, in addition to dilution of
food (i.e. replacement part of the diet with non-nutritive par-
ticles) (Bucct et al., 2024). The resulting reduced assimilation
rate of nutrients ultimately can lead to a decline in zooplank-
ton population density (Casabianca et al., 2020; Nava &
Leoni, 2021). Microplastics also can block the digestive tracts
of zooplankton (Rosenkranz et al, 2009; Nasser &
Lynch, 2016), reduce their feeding rate (Nasser &
Lynch, 2016), or directly interfere with their feeding pro-
cesses (Au et al., 2015; Blarer & Burkhardt-Holm, 2016).
The consequences include energy deficiency, decreased
growth, reduced activity, impaired reproductive capacity,
and even mortality [Besseling ¢t al., 2014; Wang et al. (2019)
and references therein]. Thus, increased microplastic con-
centrations can directly lead to a decline in zooplankton
populations, and consequently impact food web dynamics.
Malinowski et al. (2023) investigated the impact of increasing
microplastic concentrations on filter-feeding crustaceans
(Daphmia dentifera and Arctodiaptomus dorsalis) concurrent with
phytoplankton exposure. The study found that higher micro-
plastic levels reduced zooplankton grazing pressure on phy-
toplankton, leading to increased algal populations. Similar
results were observed in a trophic cascade experiment con-
ducted by Pan ez al. (2022) which found that increased micro-
plastic load reduced the grazing activity of D. magna as well as
its population density. The diminished density of zooplank-
ton can subsequently restrict the density or abundance of
planktivorous fishes and, ultimately, of piscivorous fishes that
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depend on them, as modelled by Kong & Koelmans (2019).
Consequently, benthivorous fishes can become more preva-
lent, reducing the abundance of zoobenthos and increasing
sediment disturbance and water turbidity (Casabianca
et al., 2020; Nava & Leoni, 2021). Zooplankton can egest
microplastics in the form of faecal particles and plastic resid-
uals therein can adversely affect benthic fauna communities
feeding in the sediment by causing physical damage or exert-
ing toxic effects (Green, 2016).

In addition to direct adverse effects, both micro- and macro-
plastics, when ingested, can introduce a variety of substances
mto the food web. These substances include additives, pollut-
ants, and potentially harmful microorganisms [Wang et al.
(2019) and references therein]. For instance, plastic debris can
act as a vector in the transport of toxic benthic algae, and there-
fore of the toxins they produce, into the marine food web (Leite
et al., 2022). Recent studies have shown that toxic chemicals,
heavy metals, pathogenic organisms, and degraded plastic par-
ticles can accumulate in biofilms associated with plastics, ulti-
mately entering higher trophic levels (Okeke et al., 2022).
By contrast, evidence from some studies does not support
the suggestion that plastics contribute significantly to the

biomagnification of contaminants. Koelmans e al. (2016) found
that the flux of hydrophobic organic compounds (HOCs) accu-
mulated from natural prey typically exceeds the flux from
ingested microplastics in most environments. This suggests that
microplastic ingestion is unlikely to elevate significantly expo-
sure to HOGs in aquatic ecosystems. Although microplastics
could potentially accumulate and biomagnify through the food
web at higher trophic levels, there is a lack of empirical multi-
trophic studies (Bhatt & Chauhan, 2023). A few modelling
approaches have found weak evidence of biomagnification at
higher trophic levels, for example in cetaceans (Alava, 2020)
and otters (O’Connor et al., 2022).

VI. CONCLUSIONS

(1) Deepening our understanding of the ecological implica-
tions linked to plastic pollution is essential to comprehend
its impacts fully. This begins with understanding how plastics
interact with the organisms at the base of aquatic food webs,
such as phytoplankton/phytobenthos. (Micro)plastics exhibit
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both toxicity for phytoplanktonic organisms and act as a sub-
strate for the growth of phytobenthos, thereby expanding the
potential impacts of these contaminants. However, deter-
mining the direction of these impacts, whether positive or
negative, remains challenging, and further research is
needed.

(2) While existing studies on microplastics have predomi-
nantly focused on their toxicity to phytoplankton, often con-
sidering single species, a more comprehensive understanding
of the functioning of the plastisphere and of microplastic—
phytoplankton interactions requires research focused on
complex natural communities. Expanding our comprehen-
sion of toxic effects beyond well-known polymers (e.g. PE,
PET, PP) to other types of plastics and their additives with
different chemical compositions is crucial. This research
should extend beyond marine ecosystems to encompass
freshwater environments, especially lotic ecosystems, and
consider underrepresented biomes, particularly boreal
and polar ecosystems, as well as other areas vulnerable to
the impacts of plastic pollution.

(3) While we are beginning to understand the process of bio-
film colonisation on different plastic surfaces, the precise role
of environmental factors such as light, nutrients, hydrody-
namic conditions and temperature in biofilm development
remains less understood. It is unclear whether these environ-
mental parameters modulate biofilm development on plastic
as they do for biofilms on natural substrates (i.e. benthic sed-
iment). Many studies have reported differences between bio-
film communities on plastic and those in the surrounding
environments, suggesting that responses observed in biofilms
growing on natural substrates may not be applicable to bio-
films growing on plastics.

(4) Plastic 1s known to be colonised by diverse phytobenthic
communities that become more complex over time. Within
these communities, harmful and invasive microorganisms
can thrive on plastic, posing a threat to biodiversity. Plastic
substrates induce changes in the structure and functioning
of photoautotrophic communities, potentially leading to
local alterations in biogeochemical fluxes, particularly in
the nutrient cycles. This, in turn, could impact ecosystem
functioning and productivity and the carbon cycle. Given
the fundamental role of biofilms in various ecosystem pro-
cesses and the widespread nature of plastic pollution, we
stress that more information is needed on the role of biofilms
growing on plastic substrates in these processes.

(5) Microplastics, due to their small size, can enter the food
web, affecting organisms through the introduction of toxins
and from structural features of the plastic itself, leading to
impaired body functions or behaviours. These effects have
been observed across ecosystems and regions, however, there
is still limited information on trophic transfer dynamics and
its consequences. Only a few studies have attempted to
address the bioaccumulation and biomagnification of micro-
plastics at higher trophic levels, particularly at an empirical
level. Furthermore, recorded responses to microplastic
exposure at the assemblage level in natural aquatic popula-
tions at different trophic levels are still insufficient for a

Veronica Nava and others

comprehensive understanding of the ecological impacts of
microplastics resulting from trophic interactions.
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